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PRELIMINARY EVALUATION OF THE:POLYNOMIAL AND INTEGRATED MODES
OF THE GENERALIZED ITERATOR FOR LOI TARGETING IN THE RTCC

By David K. Banner

SUMMARY

A study has been made of targeting the lunar landing mission LOI
burns by using the integrated and polynomial modes of the generalized
iterator. The results provide a preliminary evaluation of using the
generalized iterator for LOI targeting in the RTCC.

Both attainable cases, i.e., the desired nominal variable values that
can be attained, and non-attainable cases, i.e., the values can be
attained only with the integrated-burn cases, were studied.

The results show that, given the independent variables, the conver-
gence of the iterator becomes more dependent on the independent variables
and that the fully optimized mode could be run in about 3 minutes as
compared to the polynomial requiring a few seconds. However, being able
to pick the cross-product steering constant in the integrated modes allows
greater flexibility in picking a solution.

INTRODUCTION

To evaluate using the generalized iteration in the RTCC to target
the LOI burn, a study has been made of both the integrated and polynomial
burn simulation.

The independent and dependent arrays used are not those that will
be used for RTCC LOI targeting since these arrays were not known when
the study began. The optimize mode was used differently from its normal
use (e.g., in the midcourse processor). Normally this mode is used to
drive a variable toward a value that is unattainable (e.g., mass after
TEI to a value several hundred pounds above any physically possible
solution). In this study, the variable to be optimized was driven to
values that are sometimes physically attainable. This use of the optimized
mode is expected in the RTCC.

In this study, the desired nominal dependent variable values that
could be attained by both the polynomials and the integrated burn simu-
lation are termed attainable cases. Cases in which the nominal values

of ¢LLS and WLLS could be attained only by the integrated burn were re-

ferred to as non-attainable cases.




This note assumes the reader is familiar with the iterator; conse-
quently terminology concerning the iterator is not defined. Information
about the iterator can be found in references 1 and 2.

SYMBOLS
LoT lunar orbit insertion
HBO height of burnout for the LOI burn

ALLS longitude of the lunar landing site
¢LLS latitude of the lunar landing site
wLLS azimuth over the lunar landing site
Y101 flight-path angle at start of LOI
AWLOI plane change during LOI

Ath elapsed time from base time to first pass over the lunar
landing site

c cross-product steering constant
. . s L

TIGN time of ignition for LOI

eN true anomaly at the node

AVLOI change in velocity required for the LOI maneuver

AWN change in azimuth at the node (for impulsive maneuvers,
same as AWLOI)
LPO lunar parking orbit

RTCC Real-Time Computer Complex




ANALYSTS

In order to cover the LOI problem as comprehensively as possible,
four nominal trajectories were selected as test cases. These nominals
have nodes between the approach hyperbola and the lunar parking orbit

designed to occur before, at, and after pericynthion. These are described
in table I.

LOI circularization guidance, in which the required velocity is de-
fined to be the circularization velocity at the present radius to the
spacecraft, was used for the LOI burn. This required velocity lies in

a plane defined by the present spacecraft position vector and a target
vector.

The study consisted of running both select mode and optimize mode
cases on the generalized iterator with the four discrete nominal trajec-

tories (table I). With 1ndepende2t variables of ATlP, Y1012 and AWLOI for

the polynominal burn and ATlP, eN . AWLOI’ c, and TIGN for the integrated
burn (tables II and III, respectively), the generalized sequence of events
for the study followed this pattern.

First, run each trajectory in the select mode using the following
dependent array:

HBO Class I variable
¢LLS Class I variable
ALLS Class I variable
TLLS Falls out

Second, run the trajectories in the optimize mode using this depend-
ent array:

C
HBO lass I
Class III (optimized variable)
r1s P
ALLS Class I
¥

LLS Class II

%Note that eN and Y101 both define a nodal position on the approach
hyperbola.



This represents a type of "one-dimensioned minimum miss at the site"
criteria; i.e., obtain the correct ALLS and minimize the miss of the ¢LLS'

In addition, the HBO must be obtained. This reflects the current LOI

philosophy that the top priority item is to obtain H then minimize

BO?
the miss at the site. It generally requires fewer corrective maneuvers
to obtain the plane of the site in LPO than to correct a dispersed HBO'

Third, change the magnitude of ¢ so that the iterator cannot get

LLS
the exact ¢LLS using the polynomial LOI simulation; i.e., optimize ¢LLS'

Finally, run the trajectories with the finite burn to see how much
Hp, can be gained by "freeing up" c.

The step sizes for the perturbations of the independent variables,
the independent variable weights, and the dependent variable tolerances
are shown in tables II and IIT for the polynomial and integrated burn,
respectively.

LOI Polynomial Simulation

In the formulation of logic for an LOI subprocessor for the Real-Time
Computer Complex (RTCC), one must analyze many possible alternatives. First
of all, a decision must be made concerning the type of burn simulation to be
utilized in various setups of the targeting logic. The advantages and
disadvantages of an integrated burn are readily apparent, in fact it
is precisely the computer time involved in this integrated burn that neces-
sitates the using of a conic or a polynomial simulation when feasible.

The LOI polynomial simulation performs the burn impulsively at the
node between the LPO and approach hyperbola. (see figure on the following
page.) The polynomials provide a Ah, AT, and AV for the burn. Thus, by
knowing the geometry of the approach hyperbola and the desired LPO, it
is necessary only to find the nodal position on the approach hyperbola,
subtract Ah in altitude (the so-called "height drop") and add AT in time
to obtain the LPO. The resultant circular parking orbit closely approx-
imates that obtained by integrating the LOI maneuver. However, the
polynomials assume a constant value of ¢ = 1 for the thrusting maneuver
and, thus, a variable ¢ cannot be simulated.

LOI Integrated Burn Simulation
There will exist, in the real-time computation of the LOI maneuver,

cases whereby the HBO could not be achieved in the LOI polynomial simulation.

Since the polynomials presuppose a value of ¢ = 1, it has been hypothesized
that by "freeing up" this constant, the correct burnout altitude could
be bought at the expense of more LOI AV and a higher or lower (than one)
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value of c. The purpose of this portion of the study was to ascertain

the effect of c¢ in these cases. The implications for real-time applications
are apparent; while in the polynomial mode there exists only one solution
that will pass over the site with the correct WLLS (because of ¢ = l),

the integrated mode allows a family of solutions. This lends flexibility
to real-time planning.

The basic philosophy that permeated the LOI polynomial simulation;
i.e., get the HBO and minimize miss at the site, will be observed in the

integrated mode.
The Independent Variable Array

The following set of independent variables were utilized to compute

[o] .
the target vector (90° from the node) for LOI: ATlSt pass’ GN, AWN,
The AT

c, first guess was obtained from the summary page of

TIGN' 1p?
a converged polynomial run; SN was taken from the osculating elements at
the start of lunar deboocst; AWN was the algebraic difference between

WBO and wStart LOT > ¢ was nominally first guessed as one and T

was computed using time at the node and the "back-up

IGN



equation". 6y> A¥y, and the central angle from the node to the target

vector fixed the parking orbit with respect to the approach hyperbola.

T was used to control V¥ while ¢ was utilized to obtain the correct
IGN LLS

HBO'

At first glance the use of both TIGN and GN seems to be over-defining
the problem; but, as it turns out, both are needed to help the iterator
converge on an optimum solution. This implicitly means that by keeping
ON on as an active variable redefines the target LPO and helps the program

work.

RESULTS

The Polynomial Simulation

Several observations were made during the study of the polynomial
simulations. It was found that, if the variable to be optimized has too
large a weight at the beginning of the optimize mode, the Class I variable
(HBO) is driven away from a solution. This problem can be alleviated by

the following procedure: either tighten the tolerance on HBO (e.g., to

+0.1 n. mi.) or multiply the internally computed weight on the variable
to be optimized (¢LLS) by a factor of, say, 0.01. The latter method was

chosen for the optimum step size/tolerance/weight set because the O.l-n. mi.
tolerance might cause nonconvergence on trajectories with a true optimum
of, say, Hy, = 80.247 n. mi. (See nominal case 4 in table IV(a)). However,

even with this procedure, the question now arises: Do you lose solutions
in the optimize mode through improper weighting techniques? Since the
answer appears to be yes, this has far reaching implications for mission
planning.

Another minor problem noted in using the programs was that the shut-
off criteria in the optimize mode seems inefficient. Its operation is
tolerable for preflight analysis; but, for real-time applications, it
might not suffice. After a careful study of the typical behavior of the
varisble XLAMBDA throughout the optimize iterations (fig. 1), it seems
apparent that a shutoff criterion to terminate computations after a
"plateau" is reached might be feasible. In other words, after approxi-
mately eight iterations, the problem is essentially optimized (at least to
two significant places); the remainder of the optimize procedure is
concerned with small adjustments in each of the dependent variables.

This problem was particularly acute for this study since most of the
work was done optimizing on conditions the iterator could achieve; there-
fore, the residual vector upon entering the optimize mode was so small




that ¢LLS became weighted too heavily and HB was drawn out. The iterator

0
was designed to optimize on conditions it could not attain.

Early in the study it became apparent that Y101 ¥as @ highly significant

independent parameter for the LOI maneuver. If this parameter is allowed
to move freely in the search procedure, sometimes a postpericynthion
solution may be found where no prepericynthion exists; i.e., Y101 &Y

pass from a negative value through zero to a positive value. Allowing
Y101 to move freely has an undesirable effect; also, this variable will

take the place of ¢ in manipulating H and/or ¢ in this integrated

BO LLS

burn.

Midway in the analysis several factors which influence the attain-
ment or nonattaimnment of a Class III variable became apparent:

(1) Tolerances on the Class I and Class II variables.

(2) Internally computed weight on the Class III variable.

(3) Weights on the Class II's.
(L) Weights and step sizes on the independent variables.

These statements may seem innocuous at first glance, but they all
play a major part in selecting the optimum set of constraimts for the LOI
problem. It is obvious that, for any given trajectory, you may or may
not attain the Class III variable, depending entirely upon the selection
of the factors listed above. Therefore, a certain amount of uncertainty
will always exist even with a so-called "optimum" set of constraints.

Another interesting fact was uncovered in this study. Through a
programing error the trajectory was propagated from HBO to the first pass

over the site in the integrated mode; this took approximately 3 minutes
per iteration. This has real-time significance; either some calibrated
method, i.e., lunar AEG, EMPERT, etc., or a conic propagation must be
used for computer time considerations.

Much controversy was aroused due to the comparatively tight toler-
ances of +1.0° on wLLS as a Class II variable. It was argued, and jus-

tifiably so, that no matter where the search procedure started, it would
quickly hit a bound, lock, unlock, hit the bound again, etc., thereby
hampering attainment of the optimized solution. One way to avoid the
problems created by the tight wLLS bounds is to start the case in the



optimize mode so that the "begin moving" criteria is never seen. The
moral of this story is to either (1) set loose tolerances on Class II
variables, or (2) start in the optimize mode where the best possible
solution is attained within the restricted bounds. This problem does
not occur often, however, and it is thought that the optimum set of
constraints listed before will prevent its occurrence in most cases.

The Integrated Burn Simulation

Attention is directed to table IV. For the attainable cases,
several items of note become apparent. The prepericynthion burns

(cases 1 and 2) are extremely comparable; even such inactive variables as
Mass after IM separation and AVLOI are close between the integrated and

polynomial modes. With case 3 (postpericynthion burn), however, the mass
values differ by some 87 1b; but, the actual plane change made when using
the integrated burn was 1.2° greater than the polynomial case and c was
reduced to 0.8234. This occurred because the integrated simulation
locked the azimuth in the -86.0° boundary; thus, it was necessary to
change c to obtain the desired end conditions. Why the integrated solu-

tion WLLS should be so different from the polynomial WLLS when the other

three cases are so close is not now known. However, at this stage in
LOI analysis, it is felt that a ¢ of 0.8234 and a 1.2° difference in
plane change accounts for the mass difference. Note that this essenti-
ally means that the iterator found one of the afore-mentioned "family"
of solutions by changing ¢ and using more fuel. Case 4 (a burn essen-
tially at pericynthion) shows reasonable comparison between the integrated
and polynomial burns, although not quite as good as cases 1 and 2.

Table IV(b) shows the effect of ¢ much more markedly. Case 1 adjusted
on AWN, and ¢ to come closest to the desired end conditions. The itera-

tor converged on a ¢LLS in the integrated burn mode that was not the

desired value. It is assumed at this time that this was caused by weight-
ing and step size problems since there is no physical reason why the
desired value should not be obtained in the extra freedom of the inte-
grated burn. The advantages of the integrated burn are more vividly
illustrated in case 2. In the polynomial mode, a solution did not exist
for this trajectory under the given constraints. However, by manipulating
c, the iterator was able to converge on exactly the required ¢LLS’ using
58.6 1b more of fuel. Using only the polynomial burn the desired ¢LLS
would have been missed by better than 0.6°, which would undoubtedly require
a. maneuver LPO. Therefore, the 58.6 1b of fuel saved an LPO maneuver in
this case.



The results tabulated under case 4 show that sometimes even the extra
degree of freedom of the integrated burn is of no practial help. This
case with the integrated burn was not converged; it was terminated on an
iteration count. The case was not rerun since the results then illus-
trated the point and running the case until it converged would take more
computer time than the results would be worth. Because of the small
plane change (less than 1°) the node between the approach hyperbola and

the LPO associated with the maximum allowable WLLS shifted drastically

as ¢LLS was changed. Consequently, so much altitude drop would be required

at the node that the fuel used would be unacceptable. Notice also how
uneconomical large values of ¢ are. This is a case where a two-burn LOI
is most economical. The same sort of thing was tried in case 3. The
¢LLS was increased to 1.627° as the desired value. The polynomial simu~

lation was only able to reach 1.086° whereas the integrated burn was able
to attain the desired value. However, the mass difference was so great
that it could not be explained. Consequently, these results were not
included in the tabulated data. An attempt is being made to explain this
discrepancy.

CONCLUDING REMARKS

Several observations were noted during this study. It was found
that in the integrated mode, convergence became much more dependent on
the step sizes given the independent variables (especially for case 2,

a high AY case and case 6, an "at" pericynthion burn). The set of
weights, tolerances, and step sizes shown in table IIT do not, therefore,
represent a "true" optimum set as does table II for the polyncmials.
More refinement work needs to be done in this area.

It was found that a fully optimized integrated burn could generally
be run for somewhat less than 3 minutes on the 1108 while the polynomials
would run in a few seconds. However, the integrated mode offers the
unique advantage of having ¢ to use as a means of picking a member of
the family of solutions at different places on the approach hyperbola
at the expense of more AV,

Note that the "optimum" set of constraints mentioned above could be
improved by multiplying the internally computed weight on ¢LLS by a

scaling factor to insure that solutions are not driven out in the optimize
mode.
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TABLE I.- DESCRIPTION OF NOMINAL LOI'S

Case Date - Time, Description
hr G.m.t.
1 | October 26, 1968 3.75 |prepericynthion; approximately 1°
plane change
2 | February 4, 1968 20.31 |prepericynthion; large plane change
3 | February 4, 1968 12.94 |postpericynthion; large plene
change

L | December 1, 1968 9.98 |at pericynthion; coplanar




TABLE IT.- OPTIMUM STEP SIZES, TOLERANCES, AND WEIGHTS

FOR THE POLYNOMIAL BURN®

11

Varigble Octal Tolerances Weights
step size
Independent variables
ATy 4 pass $L75Th -— 0.001
AWLOI $17564 - 0.1
Y101 617554 - 4.0
Dependent variables
HBO - +0.5 n. mi. -
rs " o o
- +0. —-—
XLLS +0.01 deg
-—— + . *
WLLS +1.0 deg 1.0
%Used a weight factor of 0.01 on the variable to be optimized

(6115




TABLE III.- OPTIMUM STEP SIZES, TOLERANCES, AND WEIGHTS

FOR THE INTEGRATED BURN

Variable Octal Tolerances Weights
step size
Independent variables
ATlst pass $1T755k - 0.001
MY $1760k - 1.0
oy $17604 - 1.0
c $1T762k - 0.015625
TIGN $1T7604 —f 0.001
Dependent variables
HBQ - +0.5 n. mi. -
*Lis o o -
- +0, -
ALLS | +0.01 deg
_ +1. .0
¥i1s +1.0 deg 1
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